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Abstract

Au intelligent robotic architecture that autonomously synthesizes goal-oriented behaviors, while con-
necting sensing and action in real- timne, iS presented with applications to loosely defined planetary
sampling missions. By the goal-oriented behaviors, we mecan sequences of actions generated from
automatic task monitoring and replanning toward set goals inthe presence of uncertainties as well as
errors ant] faults.

This architecture is composed of perceptionand action nets interconnected in closed loops. The
perception net, represented as a hierarchy of features that can bc extracted from physical as well as
logical sensors, manages uncertaiuties With sensor fusion, sensor planning, and consistency mamte-
nance. The action net, represented as a hierarchy of state transition in which al the possible system
behaviors arc embedded, generates robust and fault-tolerant system behaviors with on-line adaptive
task monitoring and replannuing. The proposed intelligent robotic architecture is significant for au-
tonomous planetary robotic sampling - and related robotic tasks inunstructured environments - that
require robust and fault tolerant behaviors due to expected uncertainties as well as errors in sensing,
actuation, and environ mental constraints. We use a typical Mars planetary samnpling scenario to eval-
uvate the proposed architecture: autonomous Soil science where a robot arm trenches soil to examine
and deposit soil saunples to lander base'cl science instrumentation.

keywords: Perception Net, Action Net, Intelligent Robotic Architecture, Goal- Oriented Behaviors,
Planetary Sampling

1 Introduction

Robotic systems am at achieving intelligence in behavior and dexterity in motionthrough areal-time
connection between sensing and action. To achieve such intelligence and dexterity often requires an
integration of distributed sensors aud actuators, such that a rich source of sensory and movement
patterns that canbe clustered into higher levels of concepts and actions can be provided. The key to
successful integrationnay be asystem architecture that supports comn putational requirement s unique
to robotics, including uncertainty management and adaptive error recovery through the interaction
among such processes as feature transforination and abstraction, data and concept fusion(l,2,3, 4,
b, 6], consistency inaintenance among dat a and knowledge[7], as well as monitoring and replanning,
Inspite of the fact that a decade of research anddevelopinentin robotics has produced numerous
theoretical and experimental results, robots arc yct to acquire the level of intelligence and dexterity
required for autonomous task execution inunstructured environments. Conventional approaches for
building robotic systems without underlying computational principles of integrating sensing, knowl-
edge, ant] action in real-t,irilc seem to sufler from the limitationin task complexity it canhandle.
Should robot intelligence be measuredinterins of a ~)ower-to-weight ratio, where the power is defined
by the product of the complexity and execution speed of tasks and the weight is defined by the prod-
uct of volumeand cost associated with therequired hardware and software, atiorder of magnitude of
improvement in the power-to-weig]lt ratio secms necessary for the new generation of robotics. Robot
intelligence may be manifested by its extended autonomy. However, the extension should not simply
be the result of aggregating additional functional units, which may cause the reduction of power or




power-to-wcig'llt ratio by increasing space and time comnplexity. It iS necessary to develop a systemn
architecture that supports extended autonoiny without decrease in the power or power-to-weight ratio.
An architecture which embeds systemn knowledge as well as a general problem-solving paradigin in
itself may be desirable.

Planetary robotic science sampling represents in-situ analysis and collection of surface and sub-
surface soil ancl rock samples by robots, for the analysis of their chemical and mineral coinpositions
with science instruinents as well as for the measurement of their geological, mechanical,and thermnal
propertics with appropriate sensors. Robots engaged in planetary science sampling (e.g., on Mars)
should be capable of autonomously handling and opcrating science instruments and sensors, trenching
and scooping soil, as well as manipulating, drilling, cutting, and collecting rocks. Planetary science
sampling robots arc required to carry out loosely defined robotic missions and tasks to deal with
uncertainties from noisy and uncalibrated sensors, unexpected events from unknown environments,
system faults from possible hardware and software failures, andsystem constraints fromn the limnited
resources in power, weight, computation,sensing, and actuation.

Therefore, planetary science sampling robots should possess extended autonorny with the capabil-
ities of uncertainty management, adaptationto ncw situations, and fault tolerance. To provide the
robots with extended autonomy requires the integration of a high level of discrete event planning and
a low level of continuous time control in a hierarchy of Inulti-resolution time scales. However, such
integration should be done under the limitation of computational power andthe requirement of real-
time operation. Conventional architectures for intelligent robotic systems, such as the subsumption
architecture[8] and Nasrem architecture[9], do not directly address the problemn of reducing uncer-
tainties as well as dealing with unexpected events arid system faults. Furthermore, tile efficacy and
efficiency of mtegrating planning and control in Illulti-resolution timme scales are yet to be consolidated.

In this paper, an architecture of intelligent robotic systems, referred to here as GOBS: Goal-
Oriented Behavioral Synthesis, is presented for planetary robotic sampling. While connecting sensing
and action in real-time, GOBS autonomously synthesizes goal-oriented behaviors or sequences of
actions toward the set goals under uncertainties, errors, and faults,through task monitoring and
replanning.

GOBS is significant for autonomous robotic tasks in unstructured environinents, including plane-
tary robotic sampling, which require robust and fault tolerant behaviors under uncertainties and errors
in sensing and actuation as well as inenvirommental constraints. This paper presents the details of
GOBS designed and implemented for typical robotic sampling scenarios on Mars: autonomous Soil
science where a robot arm trenches soil to examine and deposit soil samples to lander based science
instrumentation.

2 GODBS Architecture

GOBS is composed of two major building blocks, the perceptionandaction nets, interconnected in
closed loops, & shown in Fig. 1.

The perception net connects logical sensors or features of various levels of abstraction that can be
identified by the given sensor system. In Fig. 2, the logical sensors or features that can be extracted
from the physical sensors, such as camera, proximity sensor, and tactile sensor, arc organizcdin a
hierarchy, where the logica and physical sensors are depicted respectively as rectangular and elliptical
boxes. However,inthe perception net, the conmnections between logical sensors arc further elaborated
with their relationships interms of feature transforination, data fusion, and constraint to be satisfied.
For instance, Fig. 3 illustrates the perception net constructed from the logical sensor system of Fig, 2,
as follows: The surface-orientation feature rmay be determined by the distance-to- surface logical sensor
based on feature transforination. Thesamne surface-orientation feature may be measureddirectly by
the tactile sensor, such that the feature can befinalized by fusing the two sources of data,one from
the clistallceto-surface logical scnsorand the other fromn the tactile sensor. By the same token, the
hole-3D-position feature can be detertnined by fusing the tactile sensor output and the result of feat arc
transformation from the hole-21)-J~ositic)ll, surface-c ricrltatio~l, and clista]lcc-to-surface logica scnsors.
Furtherinore, assurning two holes of the known relative distance, the two hole-31)-posi tion features
should be constrained by the known relative distance.

In general, the perception net is foried by the interconnection of logical and physical sells.ors
with three types of modules: feature transforination module (F1I'M), data fusion inodule (D¥FM}, and
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Figure 1. Two Major Building Block, Perception Net and Action Net, of GOBS

constraint satisfaction module (CSM), as shown schematically by Fig. 4. Au F1'M transformsa set
of primitive features into a more abstract and a higher level of feature. A DEFM takes multiple data
of a feature to generate an optimal estimate of the feature. A DIMmay represent either spatial
or temnporal data fusion: for the spatial data fusion (s-1>¥M), data are fromn the single readings of
multiple sensors, while for the temporal data fusion (t-13}'M), data are from the multiple readings of a
single sensor. Fach DFM module is responsible for determining whichinput data are valid for fusion
at the current sensor configuration. A CSM represents systemn knowledge which imposes a constraint
upon aset of feat, ure values.

The output of each logical sensor is a tuple representing the current estimates of corresponding
feature value and itS uncertainty imeasure,and is regarded as the current state of the sensor. Then,
the net state is defined as the collectior 1 of the states of individual logical sensors. The net is operated
in such a way that a state change at a logical sensor propagates to adjacent logical scusors, triggering
a chain of state changes throughout the net. For example, the state of a logical sensor can be updated
by fusing itS current State with a new reading from FTM through t-DFM, as schematically depicted
in Fig. 4.

Note that the propagation of state change is bidirectional, forward and backward, suchthat the
net autornatically updates, and mnaintains the consistency of, its state not only through the forward
propagation of state change but also through the backward propagation of state errors to satisfy con-
straints. in Fig. 4, the backward signa propagation is explicitly represented by feedback connections
from CSMs to the corresponding modules (refer to the detailed lines).

The bidirectional change of net state can beimplemented either by distributed computation or
by net dynamics, as described in Sec. 3. Through the bidirectional state updating process, the net
provides not ouly the reduction of uncertainties but aso the monitoring of errors arid faults, basecd
on which decision-making and replanning take place in the action net. The perception net presents a
formal yet, general architecture for sensor fusion and planning. That is, the net can also be used for
curbing uncertainties based on active modification of sensing parameters through sensor planning.

The action net consists of a hierarchy of state transition networks of multi-resolution timne scales,
as showninFig. 5. More precisely, thenet represents system dynarmnics inmulti- resolution titne scales
ranging from continuous time to discrete event dynamics, where anaction of a higher level of hicrarchy
is represented by a state transition network of a lower level. The net embeds al the feasible systemn
behaviors in various levels of abstraction. This allows the systemn to re-plan and control its behaviors
efliciently towards the set goals throughthe feedback of errors, faults, andunexpected events to the
various levels of action hierarchy,

The action net cau be interpretedinan analogy to linguistics, The system behaviors that can
be generated by the action net are equivalent to tile sentences that can be gencrated by the given
vocabularies andgraminar of alanguage. Applying planning anti control to the actionnet to generate
a goal-oriented beliavior for the given task is equivalent to searching for a sequence of grammatical
rules to generate a sentence of particular meaning. In this sense, the action net is designed to embed
ail the feasible behaviors of the systewn frotn which a particular goal -oriented behavior can be scarched




Hole-3D-Position

f A A

Hole-2D-Position

Surface Orientation

A A

A

Distance to Surface
f A

—

(Camera) < Tactile ScnsoD ( Proximity Sensor )

Figure 2: A schematicillustration of a logical sensor system.

for through planning and control.
In suminary, GORS can be considered as a computational knowledge base where concepts are
understood by the systemn through their interconnections and computational dependencies.

3 Uncertaint y M anagement,

One of the main features of GOBS is the capability of uncertainty management through its architec-
ture. The reduction of uncertainties may come fromn data fusion and constraint satisfaction as well
as from sensor planning. The processes of data fusion and constraint satisfaction occur when the net
changes its state from one equilibrium to another through the forward and backward propagation. The
sensor planning occurs when the degree of uncertainty of a state warrants additional data collection
with new sensing parameters.

3.1Uncertainty Representation

The uncertainties of logical sensor outputs arc due to the random noise and biases iuvolved inmea-
surernent data as well as clue to the biases iuvolved ininodeling feature transforinations, First, the
uncertainties clue to noise arc considered. Theuncertainties due to biases are handledin the later
section concerning the error recovery through calibration.

Although Gaussianrandomness of noise as well as independency of data mecasurements are as-
sumned in sensing, the noisc involved in a logical sensor output may not be Gaussian clue to possible
nonlinearity in feature transformation. For convenience, however, we assuine that noise is bounded by
an uncertainty hyper-volume or error ellipsoid, and that the size of error dlipsoid is small enough for
a good linear approximation of the nonlinearity aroundthe nomiunal point in feature transformation.
Formally, we represent the uncertainty, de, of anet variable, 2, as anellipsoid of the following forin:

d2'W,dz < 1 (1)

where W, represents a symmetric weight mat rix determining the size and shape of the ellipsoid

3.2 Uncertainty Propagation

T'he uncertainties propagate in the perception net through the input-output relationships of I"I'M and
DIFMnlocluilcs, as we]] as throughthe constraints defined by CSM modules.  Let us first define the
mapping relationship between the input vector, 2, and tile output vector, y, of al’I'M or al>I'M by

y = flz,p) )
where p represents a paramneter vector associated with the module (which may be subject to control
for scnsor planming, if allowed). Then, the uncert ainty propagation through (2) canbe approximated
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as the first order Jacobian relationship with the assuin ption that f is smooth and dz is small, as
follows:

. of
ytdy=f(z-i dz,p)~ f(z,p) + a“—-Aat (3)
kY
Thercfore,
af
dy ~ == da = J(z,p)dx 4
dx
where J{z, p) represents the Jacobian relationship between dy and da:. The uncertainty of z, repre-
sented as an error ellipsoid of (1), can now be propagatedto the uncertainty of y, represented as an

error €llipsoid interms of dy, through (4). By substituting da =- J* (2, p)dy, obtained from (4), to
), we have

dy' (J1) W, tdy < 1 (5)
where J? represents the pseudo-i[lversc of J.kq.(5b)canbe rewritten as
dyt Wydy < 1 (G)

where the symmetric weight matrix, W, is defined as W, = (J1)'W,J*. biq.(6) is of the samne form
as(1). The forward propagation of uncertainties toward the modules of a higher level of hicrarchy can
be done with the properly defined weight matrices of their input vectors. in the case where the input,
2, of amoduleis composed of two or more vectors, Z1and 22, with their respective weight matrices
defined as W,, and W,,, the weight matrix, W, of x can be specified by combining the individual
weight matrices W, andW,,, as follows:

W, 0
7 - I

Wy is a function of z and p, since J is a function of xand p.

3.3 Forward and Backward Propagation . .

The forward propagation of input data, (X, Wy, ), i= 1,...,m, through ¥I'M is straightforward once the
input-output relationship of FTM is given: the output of FT'M, (y, wy), canbe obtained directly {rom
(2) and(6).Since DFM can be represented by aninput-output relationship), the forward propagation
through DM can also be clone with (2) and(6). The input-output relationship of D}'M can be
derived from one of the exist ing data fusion mcthods[6]. Hlowever, we present here a new geometric
method of data fusion to takeinto consideration the ellipsoidal bound representation of uncertainties
adopted here.

Yor simnplicity, consider the two measuremnents, X1, aud X2, defined respectively inthe two
measurcinent space, x;and xz, where their uncertainty bounds are defined try the weight matri-
ces, Wx,,. and Wy, ,respectively. The proposed geomnetric data fusion method starts with defin-
ing the augmented space, z,z= (x1,x2)7, such that the measurcinent data, (x1mn, Wx,,.) and
(X2,,,, Wy, ) are represented in an augmented space as (z,,,, W,,, ), wherez,, = (XI,,,, x2,, )" and
Whe.,. = Diag[Wx,,., Wx,,, J. 'Then, the problemn of fusing (X1, Wx,,. ) and (Xzm,Wx,,.) is equivalent
to fing] a point, y, on the constraint tnanifold, x; - x2= 0, defined in the z space in such a way that the
weigh ted distance between y andz,, , or %Hy- znflw,,, IS minitmum. Once we have an equation for y
interms of (X1, Wx,,,) and (X2,,,, Wx,,. ), WY canbe obtained based onthe uncertainty propagation
method described by (2 - 6).

Asa result, the output, y, of DM with x,and X, as its inputs can be determined as the vector
that minimizes 23|y - *illw,, , as follows:

Y = (W o Wi )7 (Wa X3+ Wayx2) (8)
The uncertainty bound, WY, associated with y can be obtained by applying (4)(5)(6) to (8):
Wy = [AAT 4 BBY) AW, AT 4 BW,, 1Y) ©)
where A 2 (W, -1 Wy, ]t w,
BE W, 4 Wil TWa,




Note that (8) is of the same forin to the maximum Bayesian posteriori probability with the Gaussian
assumption of noise.

The backward propagation process starts with a CSM. Yor instance) consider that the two logical
sensor output vectors, X and y, arc constrained by AX 4 By =- ¢.CSM evaluates whether the current

estiinates, xy and yy, of X andy from the forward process satisfy the given constraint. If not, CSM
updates (x!,le,) and (y,, Wy,), where Wx, andWy, arc the weight matrices associated with X

andy;, respectively, into (xb,Wx,,)and(yb,Wyb)m such a way that x,and¥Ys satisfy the constraint,
The derivation of a mathematical forinula for this process is same as that of DFM: the concepts of
CSM and DFM can be unified under the proposed geometric method of data fusiou.

To show this, let us first define the auginented space z with X and y, =z = (X, y) 7. Thien, the
constraint of CSM can be represented as a manifold in the augmented space. 1<urthermorc (%, lef)
and (y7,Wy,) can be represented in the augmented space as (25, Wa, ), withzs = (xg, ys)7 and
VV,, = Diag[Wx,, Wy,]. Finally, by selecting a vector, Ib,lb- (x5, y5)T, on the constraint manifold
in such a way that the weighted distance from #s to zs, 31|76 — z ¢ ||

(x4, W) and (yo, W), as follows:.
Miu 3z - 7j”W, with#s on the constraint maniflold 1mp11es Min 4 ([|xe - xslwi )+ llys -

¥illw,, with Axy + BYb = c. Since Yo = B~ '(c — Axp) or xp = A-l(c  Byt) o1 the constraint
manifold, Min 3 (|]xs — xtllw,, +1lys = ¥sllw,,) with Axy+ By, = ¢ can be expressed in the x, space
as Miu 3 (|jxs — xzlw,, -i |53~ (c - Axp) — y,|]wy!), or in the ys space as Min 3 (|41 (c - Byy) -
xz|| Wi, 4llye— vy ”W,, )- Then, xo and¥s can be obtained by solving the corresponding minimization
problemns in xp and Y space, as follows:

., » ISminimum, wc can obtain

X6 = (Wi, 4 (B~Y AV Wy, (157 TA)] Wi, xs + (B A Wy, (B e - yj)] (lo)
Yoo Wy, ' BY Wy (AU (Wyyys 4 (ATB)T Wi, (A'c - x)) (11)

Egs. (10) and (11) define the input-output mappings of the formn, xp =- Ayxy -t Byy; + Ky and
yo = AyXy + Byys 4 Ky, where Kx and Ky arc constant. Therefore, by applying Figs. (7), (8) and
(9) of uncertainty propagation to (1 O) and (1 1), we have the same result as (9) with A == AX and
B-=HB,or A= Ay and B =B,

Oncex; and ys are updated to Xy and ¥, the updated vectors, xand ¥u,in turn, impose con-
straint on the lower level processes in the hicrarchy. ‘1'bus, the samne backward propagation defined for
CSM canbe applied to the subsequent process, except that x, and ¥yt are associated with urncertainty
iatrices. This case is equivalent to the CSM problemn but with the uncertainty of crepresented by
d? Wed, = 1. In this case, xsand¥s can be obtained by the same way as (1 0) and(11) asif ¢ has
no uncertainty. However, in order to compute Wy, and Wy, , x, and ¥ should be represented as a
function of x;,y; arid ¢ so as to consider the eflect of W, on Wy, and Wy, i Xs = Axx; - By -} Cxe
and Yt = Ayxs - Byys + Cye,such that Wy, and Wy, canbe computed bascd on ligs. (7),(8), and
(9), with [AX, By, Cx]and[Ay, By, Cy] dcﬁnedas.]acoblans.

4 Error Monitoring and Recovery

1O)FM ant{ CSM of the perception net make it possible to monitor errors, i.e., biases and faults in
sensing and action. Upon the identification of biascs and faults iusensing and action, the action net
ivokes error recovery andrepairment actions. In GOBS, error monitoring and recovery consist of
1) error detection, 2) error identification, and 3) sensor calibration and action replanning for error
recovery and repairment.

4.1 ¥rror Detleclion

Frrors may be detected from the following informatioun:

1. The discrepancy between the planned and ineasured states,

2. The inconsistency among the input data of DIM.




3. The violation of constraints at CSM.

To clarify the meaning of discrepancy,inconsistency,and violation, we need to quantitatively define
the thresholds that separate the effect of biases ant] faults from that of uucertainties.

The inconsistency among the input data of DIF'M canbe evaluated based on the ellipsoidal repre-
sentation of uncertainty bounds: T'he input data of DFM are said to be inconsistent if the elli psoidal
uncertainty bounds of input data have no cornmon intersection. More forinally,the existence of a
common intersection among theinput data, (x, W), (x,, W,), . ... (X,,, Wa), where W; is the weight
matrices associated with x; for iz 1,... n, canbe evaluated by the following rule:

If [|x — xillw, < 1, for i = 1,....,n with X = (3 Wi) T XWixq, Then, there exists a conmon
intersection among the ellipsoidal uncertainty bounds of x,1=1,...,n. Otherwise, there
exists no common intersection.

Similarly, the violation of constramt at CSMby zs=(xs,y; )" can be detected by checking whether
the vector, z,%b = (Xb,)’b) ; on the comtramlmamfo]d that minimizes the weighted distance from

7610 %, |76 - ﬁj“W.,nmnmdo the uncertainty ellipsoid of zy:

I {76 — =s{lw,, <1, then, (x7,ys) does not violate the constraint, Otherwise, (xy,y;)
violates the constraint.

The discrepancy between the planned and measured states can aso be detected by checking whether
there is a common intersection between the uncertainty ellipsoids of planned and mcasure states, where
the uncertainty ellipsoid of planned state canbe determined by tile expected uncertainty involved in
plan execution.

4.2 Error ldentification

Upon the detection of errors, there nceds to identify the source of errors. When more than two input
data arc involved in DFM, we can check which input data is isolated fromn the rest in terins of sharing
acommon intersection. in geueral, for a DFM with multiple input data, it is possible to identify
groups Of input data that share a cominon intersection {based on the method presented above). The
input data that belongs to the group of single or sinall number of members may be considered as a
likely source of error.

When error is detected in the input data, (x7, Wy, ) and(ys, Wy, ), of CSM, wc can check whet her
xp and Yb arc inside the uncertainty ellipsoids of (x;, W, gaud (¥7, WY,), respectively. That is, if
llxo = *sllw,, >1orif llys = ¥sllw,, > 1, thenx;or yjlllaVbC a likely source of error.

Further i‘solailon of error sources can bedone through the net hierarchy. By applying the above
error detection method to DFMs and CSMs distributed in the net, those logical seusors associated with
DIF'Ms and CSMs can be classified either likely-in-error, unlikely-in-error, or possibly-irl-error. Then,
these classifications arc propagated through theuet to extend the classifications to other logica sensors
connected through the hicrarchy. The cross-checking of these classifications propagated through the
net hierarchy provides further isolation of errors, as showninlig 3. We can extend the propagation
and cross- checking of classifications to the action net, since the discrepancy between the planned
andnecasured states provides additional error detection. If the above D¥M and CSM based error
identification method fail to isolate error sources, sensor planning or error-isolation action should take
place in the action net for complete isolation of errors,

4 .3 Error Recovery

Ouce error sources arc isolated, thenthesystemmust take actions to repair the errors aud to recover
from the errors. T'wo types of actions can teke place:1) Calibration of sensors to eliminate biases. 2)
Replanning the actions to reach the desired goa state under errors. For the first, a predefined sensor
calibration routine for the scnsorin error will beinvoked by the action net. For the second, the action
netreplans the task based on the GOBS modificd according to the isolated errors,




5 Planetary Robotic Science Sampling: Soil Science

Autonomous soil science includes the trenching of planetary soil by a robot to collect and analyze
subsurface soil samples, Autonomous soil science is composed of the following activities: trenching
site designation by scientists, visual and tactile verification of trenching site by a robot, planning
of optimal trenching trajectories with measured s property,adaptive trenching, planning of optimal
scooping trgjectory, and adaptive scooping. Uundoubtedly, uncertainty manageinent as well as error
monitoring and recovery play an important role,

More details arc described by the following steps:

Step 1:

Scientists choose a desirable trenching location, length and depth at the ground station
in interaction with themonitoring system based onthe down-linked stereo camera images
and a mouse-based user interface.

step 2

W?Ph the starting point, trenching length and depth data from the ground station, GOBS
explores the trenching surface by means of touch and tactile exploration with the robot
hand in order to accurately localize trenching surface andeasure surface rigidity or
resistance. These data are used to construct the desired trenching trajectories with optimal
arin Configurations.

Step 3:

The armn moves to the initial contact point and follows the preset trenching trajectories
with the optimal armn configurations. Trenching is started by cutting the soil a a pre-
scribed depth with a predefined end-effector orieutation and swath towards the lander.
Excavated 0il is deposited a the back end of the trench. GOBS responds to soil and
trenching variables to meet the science goals: GOBS monitors the relationship between
the measured force and motion during trenching to detect abmornalics and change the
trenching trajectories andarmin configurations in adaption to variations and abnomnalies.
GOBS aso makes sure of obtaining the required scientific measurements with soil temper-
atures, cutting forces, cutting speed, etc. Trenching continues nominally until a prescribed
depth is reached.

step 4:

At the prespecified depth, or in the case where soil samnpling is dictated by GOBS due to
hard soil or rock (indicated by sensors), the arm collects soil sample by scooping operations
and deposits the sample in the Lander instruient bin. GOBS verifies that the arim actually
has the soil sample in its end-effector. GOBS invokes corrective actions, if necessary.

The GOBS architecture to implement the above steps is illustrated in Figs. 6, 7

5.1 GOBS Operations

Through the perception net, shownin Fig. 3, GOBS explicitly manages uncertainties: Uncertainties
associated with individual logical sensors (depicted as circle) arc propagated through such functional
modules as DFM, ¥'I'M (trapezoidal shape), and CSM (double hexagon). The values associated with
logical sensors are updated through forward and backward process of reaching anequilibriumn poiut.,

Iuthe perception net, the reduction of uncertainty inlocating the scoop at the designated trenching
site is highlighted by the data fusion with the joint encoders, the stereopsis with amarker, and the
tactile exploration, as well as the constraint from the trenching plane. in the action net, the top
level of the action net of GOBS for soil trenching and scooping is shownin Fig. 7, where actions
arc depicted by boxes while states are depicted by (double) circles. Thelower level of the action net
includes the details of actions defined at the higher level: e.g.,the adaptive trenching state transition
network in Vig. 8.

Iixample: Frror Monitoring and Recovery-1

The arm iS corminanded t0 move to the preplanned approach point. There can occur the following
two scenarios:
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1. the task is successfully completed, i.e., the sensor reading coincides with the planmed position
(within some allowed error range)

2. the task is not successfully completed, within the expected time), i.e., the system fails to reach
the planned position.

Now, we can check the actual end-eflector position by using 3-1) marker.

In the first case, if the 3D-marker reading coincides with the encoder reading, then the systewn is
in a norma operational mode, and data fusion can occur. However, if the 3D)-marker reading does not
coincide with the encoder reading, then, we can say that either the encoder is biased or the marker
reading (vision) is biased. The encoder bias can be calibrated through the arm calibration procedure
(using a zero position or a refercuce position and potentiometer). Once the encoder bias is calibrated,
then we know whether the inconsistency is due to the bias in markerreading. If so, we need to follow
the vision calibration procedure.

I the second case, if the 3D)-marker reading coincides with the encoder reading, then it is likely
that the actuator or controller is in fault. In this case, the systcincanmake a sense of that motion
(for individual joints) to further isolate which actuator is in error. If the 3D-marker reading clocs not
coincide with the encoder reading,the error may be either in encoder and/or in actuator and/orin
marker reading. Fincoder calibration and the actuator fault isolationroutines are necessary for further
identification of the problem.

I'xample: krror Monitoring and Recovery-2

During trenching, the abnormal encoder reading or impedance mecasure indicate that the trenching
is not progressing well. This may be the case where the scoop is stuck at the rigid soil or underg round
rock site or the failure of adaptive itnpedance control for trenching. The failure of adaptive inpedance
control may come from actuators, encoders, power supply, controllers, or force sensor. The abnormal
impedance readings means the violation of the preset force and position error relationship. I the
case where the im pedance measure is nonnal but encoder readings indicates tile jamming situation,
then we apply the discrete event control to modify the trenching trajectory. In the case where the
nnpedance measure is not normal, then we perforin a series of actions to identify the source exactly.
Yor instance, the routines for the calibration of encoders, force sensors and for checking actuator
perforinance, etc. Based on the above, the problein can be pin-pointed.
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v 6 Conclusion

The proposed GOBS architecture provides a formal mechanism of integrating sensing, knowledge,
and action in rea-time for intelligent robots. The architecture emphasizes uncertainty management
as well as error monitoring and recovery such that the system can provide robots with the capability
of generating goal-oriented, yet robust and fault tolerant, behaviors. The proposed geometric method
for uncertainty management and error monitoring through the perception net is novel and powerful
due to its systematic method. One might find it interesting to compare it with the existing probability
network. ‘The perception net provides a more general but formal way of accomplishing sensor fusion
and planning. ‘The proposed GOBS architecture also serves as a general intelligent control architecture
that can be applicable to the control of complex systems including spacecraft and power plants,

Future work includes the continuous implementation of the GOBS and the evaluation of GOBS in
comparison with existing architectures, especially, in terms of the power or power-to-weight ratio of
intelligence measure introduced in the beginning of this paper.
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